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Abstract
Although many studies have assumed variability reflects variance caused by exercise training, few studies have examined 
whether interindividual differences in trainability are present following exercise training. The present individual participant 
data (IPD) meta-analysis sought to: (1) investigate the presence of interindividual differences in trainability for cardiorespi-
ratory fitness (CRF), waist circumference, and body mass; and (2) examine the influence of exercise training and potential 
moderators on the probability that an individual will experience clinically important differences. The IPD meta-analysis 
combined data from 1879 participants from eight previously published randomized controlled trials. We implemented a 
Bayesian framework to: (1) test the hypothesis of interindividual differences in trainability by comparing variability in change 
scores between exercise and control using Bayes factors; and (2) compare posterior predictions of control and exercise across 
a range of moderators (baseline body mass index (BMI) and exercise duration, intensity, amount, mode, and adherence) to 
estimate the proportions of participants expected to exceed minimum clinically important differences (MCIDs) for all three 
outcomes. Bayes factors demonstrated a lack of evidence supporting a high degree of variance attributable to interindividual 
differences in trainability across all three outcomes. These findings indicate that interindividual variability in observed 
changes are likely due to measurement error and external behavioural factors, not interindividual differences in trainability. 
Additionally, we found that a larger proportion of exercise participants were expected to exceed MCIDs compared with 
controls for all three outcomes. Moderator analyses identified that larger proportions were associated with a range of factors 
consistent with standard exercise theory and were driven by mean changes. Practitioners should prescribe exercise interven-
tions known to elicit large mean changes to increase the probability that individuals will experience beneficial changes in 
CRF, waist circumference and body mass.
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1 Introduction

Many exercise training studies have interpreted wide ranges 
of observed changes in physiological outcomes as evidence 
that individuals demonstrate varying degrees of trainabil-
ity—the change in a given variable directly attributable to 

an effect of exercise training per se [1–3]. However, these 
interpretations ignore the confounding influence of meas-
urement error and/or variability introduced by changes in 
behavioural/environmental factors not related to exercise 
training including changes in sleep, diet, stress, etc. [4]. The 
confounding influences of behavioural and environmental 
factors are collectively referred to as “within-subject vari-
ability”, and recognizing this source of variation challenges 
the assumption that interindividual differences in trainability 
exist following ostensibly the same exercise training stimu-
lus [5, 6]. Rather than assuming its existence, several studies 
[7–12] have estimated the presence of interindividual differ-
ences in trainability by determining whether the variability 
of change scores is larger in exercise compared with con-
trol groups [5]. Only some of these studies reported larger 
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Key Points 

For the purposes of this meta-analysis, we define “traina-
bility” as the change in a given variable directly attribut-
able to an effect of exercise training free of measurement 
error and confounding factors.

Larger exercise doses and other prescription factors 
consistent with standard exercise theory and larger mean 
changes were associated with larger proportions of indi-
viduals experiencing clinically meaningful changes in 
cardiorespiratory fitness, waist circumference, and body 
mass.

Regardless of whether individuals respond differently as 
a result of exercise training per se, clinicians should pre-
scribe exercise doses known to elicit large mean changes 
in order to increase the probability that individuals expe-
rience clinically meaningful improvements in cardiores-
piratory fitness, waist circumference, and body mass.

meta-analysis to assess the extent to which interindividual 
differences exist in trainability of CRF and body composi-
tion parameters.

Despite limited evidence supporting the presence of inter-
individual differences in trainability, there is an abundance 
of evidence (reviewed in [1–3]) demonstrating individual 
differences in observed changes in outcomes after complet-
ing ostensibly the same exercise training intervention. For 
example, individual changes in CRF following 24 weeks 
of standard aerobic training ranged from ~ − 3 to + 16 mL/
kg/min [18], and this range of change scores (~ 19 mL/kg/
min) substantially exceeded both a clinically meaningful 
CRF change (e.g., 3.5 mL/kg/min [19]) and the variation 
that is equivalent to measurement error alone (~ 2.31 mL/
kg/min). That is, although the relative contribution of train-
ability to observed changes in outcomes is unclear, it is 
clear participants with the largest observed change scores 
had a higher probability of experiencing clinically mean-
ingful CRF improvements than participants with the lowest 
observed change scores. Exploring potential moderators of 
observed change scores may elucidate exercise prescription 
strategies for maximizing the probability that an individual 
experiences a meaningful change. Employing a Bayesian 
framework that enables flexible modelling and generation 
of subjective probabilities [20] provides an effective method 
for interpreting change scores not simply on mean values in 
the measured units, but more applied and clinically relevant 
interpretations such as the expected proportions to exceed 
relevant thresholds. Conducting a Bayesian IPD meta-analy-
sis with our large dataset [17] provides the scope to examine 
the role of potential moderators such as exercise adherence, 
intensity, duration, and mode on the probability that an indi-
vidual will experience a meaningful change in CRF, waist 
circumference, or body mass.

Accordingly, the objectives of this large dataset (n = 1879 
participants) IPD meta-analysis were to: (1) investigate the 
presence of interindividual differences in trainability for 
CRF, waist circumference, and body mass, and (2) examine 
the influence of exercise training and potential moderators 
on the probability that an individual will experience benefit 
in these three outcomes. We also estimated the influence of 
exercise training and potential moderators on the distribution 
(i.e., standard deviation) of CRF, waist circumference, and 
body mass change scores.

2  Methods

The present study is an IPD meta-analysis of CRF, waist 
circumference, and body mass data from eight previously 
published exercise intervention RCTs. Table 1 summarizes 
the participant characteristics, total sample sizes, and train-
ing protocols, with full study details published elsewhere 

variability in exercise groups [7–12], and this inconsistency 
may be explained by small sample sizes (range 26–181) 
leading to imprecise estimates, or by heterogeneity in the 
outcomes examined across these studies. The extent to which 
variability in observed changes reflects interindividual dif-
ferences in trainability therefore remains unclear.

Analyses pooling data from the same outcome across 
multiple studies can offer greater precision for determining 
the presence of interindividual differences in trainability. 
Recent aggregate data meta-analyses—with sample sizes 
ranging from 1185 to 1500 participants—have reported a 
lack of clinically important [13, 14] or no [15] evidence of 
interindividual differences in trainability in body mass and 
body composition parameters. An alternative to aggregate 
data meta-analyses is individual participant data (IPD) meta-
analyses, which involve obtaining and analyzing raw par-
ticipant data. Compared with aggregate data meta-analyses, 
IPD meta-analyses permit the ability to investigate poten-
tial moderators, provide more precise estimates, and enable 
greater flexibility in statistical modelling by unrestricting 
assumptions of the distribution of underlying change scores 
[16]. We recently compiled a large dataset of 1879 partici-
pants across eight randomized controlled trials (RCTs) that 
investigated the effects of different doses of exercise train-
ing on various health outcomes including cardiorespiratory 
fitness (CRF), waist circumference, and body mass [17]. 
This dataset presents an opportunity to perform an IPD 
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[21–28]. Each study received ethics approval at their respec-
tive institutions, conformed to the guidelines of the Decla-
ration of Helsinki, and obtained written informed consent 
from each participant prior to commencing data collection.

2.1  Outcomes

Although outcome assessment protocols varied slightly 
across studies (full details elsewhere [18, 22–25, 27–32]), 
all eight studies used similar methods to measure CRF, waist 
circumference, and body mass. Briefly, CRF was determined 
as the maximum level of oxygen consumption, measured via 
gas exchange using a metabolic cart, during an incremental 
exercise test to exhaustion and expressed in relative (mL/
kg/min) units. Waist circumference was manually assessed 
using tape measures (expressed in centimeters) and body 
mass was measured using scales (expressed in kilograms). 
We focused on these three outcomes because they were 
included in all eight studies and because they are clinically 
relevant due to their association with all-cause morbidity and 
mortality [19, 33, 34]. Our analyses (described in Sects. 2.2 
and 2.4) estimated the proportion of individuals that would 
be expected to exceed minimal clinically important dif-
ferences (MCIDs), which were + 3.5 mL/kg/min for CRF, 
− 2 cm for waist circumference, and − 2 kg for body mass as 
we [11, 35] and others [9] have used previously. The analy-
sis approach was selected for multiple reasons. Firstly, the 
proportion of individuals that exceed an MCID provides an 
easy-to-understand outcome that communicates the practical 
relevance of an intervention. Secondly, the difference in pro-
portion of individuals that exceed the MCID between exer-
cise and control, or due to change in a moderator, provides 
an informative and clinically relevant perspective. Thirdly, 
the results of each of these large RCTs have been published 
previously where analyses have already focused on standard 
analyses such as mean change.

2.2  Bayesian Framework

The majority of meta-analyses (examples in [13–15]) follow 
a frequentist framework whereby parameters (e.g., means 
and standard deviations (SDs)) are objectively estimated 
from the data and uncertainty is expressed with confidence 
intervals. A limitation with confidence intervals is their ina-
bility to provide distributional information, such that there is 
no direct sense for whether a parameter estimate in the mid-
dle of the interval is more probable of representing the true 
value than any other value within the interval [20]. In other 
words, a 90% confidence interval centered around a mean 
CRF change of 3 mL/kg/min and ranging from 1 to 5 mL/kg/
min should be interpreted as: 90% of similarly sized inter-
vals (i.e., ranging 4 mL/kg/min) obtained from repeatedly 
completing the trial will contain the true mean change [20]. 

However, researchers often misinterpret confidence intervals 
[36] as (in keeping with the previous example) there being 
a 90% chance that the true change in CRF is between 1 and 
5 mL/kg/min. Although the latter interpretation is perhaps 
more intuitive and desirable when trying to estimate a given 
parameter (e.g., true mean change in CRF), this interpreta-
tion cannot be made within a traditional-frequentist frame-
work [20].

Instead of implementing a frequentist approach, we 
implemented a Bayesian framework for our IPD meta-
analysis. Rather than estimating parameters from the data 
alone, Bayesian frameworks combine prior beliefs and the 
data to estimate the most plausible parameter values (e.g., 
mean change in CRF). Bayesian frameworks are therefore 
considered subjective because researchers can incorporate 
their a priori expectations when estimating parameters. For 
example, a researcher could use information from several 
large-scale, rigorous meta-analyses to develop an expected 
mean change in CRF, and then combine this information 
with their actual data to derive the most plausible estimate 
for the true mean change in CRF. In Bayesian analysis, prior 
beliefs refer to the probability of obtaining parameter values 
(e.g., mean change in CRF) given a specific data-generating 
model (e.g., normal distribution), and are written as:

where p is the probability, Θ are the parameters of the model 
(e.g., mean change in CRF and standard deviation), the verti-
cal dash means given, and M is the model (e.g., normal dis-
tribution). The prior is combined with the likelihood, which 
refers to the probability of obtaining the data (e.g., dataset of 
raw CRF change scores) given specific parameter values and 
the specified model. The likelihood is written as:

The prior and likelihood are then combined and scaled to 
obtain a posterior distribution reflecting updates of beliefs 
in the light of the data and written as:

Intervals known as credible intervals (CrIs) can also be 
constructed from the posterior distributions and quantify the 
probability of containing the actual parameter value (e.g., a 
90% chance of containing the true mean change in CRF). 
It is important to emphasize that credible intervals repre-
sent subjective probabilities because they are built using 
prior beliefs. Nevertheless, if prior beliefs are well justified 
(e.g., established using relevant data), then credible inter-
vals permit arguably more useful interpretations compared 
with confidence intervals [20]. Finally, different moderator 
values can be entered into models (e.g., exercise intervention 
of 4, 6, and 8 months) to simulate new data ỹ and estimate 

p(Θ|M)

p(y|Θ,M)

p(Θ|y,M)
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proportions of individuals expected to exceed thresholds 
such as the MCID.

We conducted our IPD meta-analysis by fitting Bayesian 
hierarchical distributional regression models that modeled 
the mean and variance parameters. All models comprised 
random intercepts to account for systematic differences 
across studies, and models with group (exercise vs. control) 
and moderators (defined below) included these variables 
as fixed effects. The subsequent methods sections provide 
specific details on how we used these Bayesian models to 
investigate interindividual differences in trainability and pro-
portions of participants exceeding MCIDs.

2.3  Individual Participant Data (IPD) Meta‑analysis: 
Interindividual Differences in Trainability

We fit initial base models of our IPD meta-analysis that 
included the mean and variance parameters across three 
different types of distributions: normal, skew normal, and 
t-distributions. The most appropriate distribution type for 
each outcome was determined using the Watanabe–Akaike 
information criterion, and these identified distribution types 
were then used in all subsequent analyses for each outcome.

To investigate the presence of interindividual differences 
in trainability, we first conducted analyses to obtain Bayes 
factors. Bayes factors are denoted as:

because they are obtained by estimating the probability ( p ) 
of obtaining the data ( y ) given two different models: M1 
represents a model that included group as a fixed effect of 
the variance parameters (i.e., exercise vs. control), whereas 
the M2 model did not contain a group factor for variance 
parameters (i.e., all data combined as coming from one 
large group). That is, the M1 model allowed us to estimate 
the probability that the variance in exercise change scores 
exceeded the variance in control change scores—an obser-
vation indicating the presence of interindividual differences 
in trainability [5]. Conversely, the M2 model estimated the 
probability of the null hypothesis (i.e., variance in exercise 
not greater than variance in control). A Bayes factor greater 
than 1.0 would indicate that M1 was a better fit, which would 
then indicate the presence of interindividual differences in 
trainability because the probability of the variance in exer-
cise exceeding control was higher than the probability of 
the null [37]. Bayes factors less than 1.0 would therefore 
indicate a lack of interindividual differences in trainabil-
ity [37]. The strength of evidence in favour of either model 
( M1 or M2 ) was evaluated according to a previously defined 
scale [37]. As described above, Bayesian frameworks require 
incorporating prior beliefs. Given limited pre-existing data 

(
p
(
y|M1

)

p
(
y|M2

)

)

to justify appropriate priors, we created “local” priors using 
our dataset. Specifically, we developed priors from randomly 
created “training sets” that consisted of one-third of the total 
dataset, meaning that Bayes factors were calculated on the 
remaining two-thirds of the dataset. Due to stability issues 
with calculating Bayes factors [38], we repeated these steps 
four times (i.e., creating five different priors each containing 
one-third of the data) and calculated an average Bayes fac-
tor for each outcome. As a final check, we calculated Bayes 
factors with weakly informative priors, which returned val-
ues close to the average Bayes factors calculated with local 
priors.

2.4  IPD Meta‑analysis: Posterior Predictions 
for Proportions and Distributions of Change 
Scores

To investigate the proportion of individuals in exercise and 
control exceeding the MCID, we used the posterior sam-
ples p(�|y,M) from the best fit distributional base model 
to generate posterior predictions p(ỹ|𝜃,M) (n = 1000) and 
calculated the proportion of samples exceeding the MCID. 
To compare variances in both exercise and control, the M1 
model was used. Given the heterogeneous nature of the data 
with regards to participant (sex, age, and diabetes status) 
and exercise (aerobic, resistance, or combined) characteris-
tics, individual subgroup analyses were conducted and are 
presented in the Online Supplementary Material (OSM) 
Tables S1–S3. Moderator analyses were then investigated 
through a similar process, first obtaining posterior samples, 
and then generating posterior predictions. Moderator fixed 
effects were included for the mean and variance parameters. 
As mentioned above, an additional advantage of Bayesian 
analysis is the flexibility in fitting models when pooling data 
in IPD meta-analyses [39]. For instance, although only one 
trial included measures at 4 months [40], we were able to 
include this time point in our duration moderator analysis 
through simulation and subsequently estimate proportions 
exceeding MCID and SDs at 4 months.

We evaluated six moderators: (1) intervention duration 
(4, 6, or 8 months); (2) exercise adherence (number of 
calories expended during aerobic exercise training rela-
tive to the amount prescribed; categorized as ≥ or < 70% 
for “high” or “low” adherence, respectively); (3) exer-
cise mode (aerobic, resistance, or combined); (4) exercise 
intensity (aerobic exercise only—including binary low/
high with cut-offs comprising 60% of maximum CRF, 
heart rate, or  VO2 reserve); (5) exercise amount (aerobic 
exercise only—low: less than 500 kcal per session; mid: 
between 500 and 1000 kcal per session; high: greater than 
1000 kcal per session); and (6) baseline body mass index 
(BMI) (trinary as mean or beyond ± 1 SD). We only eval-
uated exercise adherence for groups that followed aerobic 
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or combined aerobic and resistance training as exercise 
expended calories were not used to characterize adher-
ence to resistance training. Because Bayesian analysis 
estimates subjective probabilities, we subjectively inter-
preted differences in proportions across moderators rather 
than identifying influential moderators with objective 
cut-offs. For example, because confidence intervals do 
not provide any distributional information (e.g., unclear 
whether most likely proportion is at the center or outskirts 
of the confidence interval), a frequentist approach using 
confidence intervals may limit us to identifying modera-
tors as being influential only if confidence intervals do 
not overlap (e.g., high-intensity confidence interval lay 
fully above low-intensity confidence interval). However, 
this conservative approach is unwarranted with Bayes-
ian analyses because each proportion represents the most 
probable estimate (i.e., the center of the credible interval 
is indeed the most likely proportion). Therefore, our sub-
jective interpretations looked for patterns in proportions 
across levels (e.g., proportions increasing from 4 to 6 to 
8 months) and noted whether results were consistent with 
standard exercise theory (e.g., higher exercise dose result-
ing in larger proportions [17]). It is important to note that 
the proportion of individuals exceeding the MCID was 
based on a modelling approach of the change distribu-
tions and not dichotomisation of individual results (e.g., 
direct calculation of proportion from the sample), which 
substantially reduces the amount of information available 
and fails to account for uncertainty in individual measure-
ments. We therefore did not use the terms “responder” or 
“non-responder” when interpreting our results.

Weakly informative Student-t prior and half-t priors with 
3 degrees of freedom and scale parameter equal to 2.5 were 
used for intercept and variance parameters for the hierarchi-
cal distributional models [41]. All analyses were performed 
using the R wrapper package brms interfaced with Stan to 
perform sampling [42] and the R package bridgesampling to 
calculate Bayes factors. Convergence of parameter estimates 
was obtained for all models with Gelman–Rubin R-hat val-
ues below 1.1 [43].

3  Results

3.1  Cardiorespiratory Fitness

The best model fit for CRF change scores (Fig. 1) was 
obtained using a t-distribution (expected log predic-
tive density (elpd) difference: t-distribution vs. normal 
skew = 3.0 times standard error; t-distribution vs. nor-
mal = 4.0 times standard error). The base IPD model esti-
mated a mean change of 2.2 mL/kg/min (90% CrI 1.5–3.0) 
for exercise and − 0.29 mL/kg/min (90% CrI − 1.0 to 0.6) 

for control. The base IPD model also estimated a standard 
deviation of change scores of 3.4 (90% CrI 2.9–3.9) and 
3.5 (90% CrI 2.9–4.2) for exercise and control. The aver-
age Bayes factor was less than 1.0 and identified moderate 
evidence (average Bayes factor = 0.11, range: 0.01–0.15) 
supporting the  M2 l model, thereby refuting the presence 
of interindividual differences in trainability. Substantive 
overlap of standard deviation of change scores across all 
subgroups (OSM Table S1) provides additional support 
refuting the presence of interindividual differences in train-
ability. Table 2 presents the estimated proportions of par-
ticipants exceeding the MCID of 3.5 mL/kg/min and esti-
mated standard deviations of change scores with 90% CrI 
denoting the subjective probabilities. Exercise training had 
a higher estimated proportion of participants [estimated 
proportion, 30% (90% CrI 21–41)] exceeding the MCID 
of 3.5 mL/min/kg compared with control [11% (90% CrI 
5–19)]. Several moderators appeared to increase estimated 
proportions of participants exceeding the CRF MCID in 
the exercise group consistent with standard exercise theory 
(Table 2): (1) longer exercise durations, (2) higher exercise 
adherence, (3) higher exercise intensity, (4) combined aero-
bic and resistance, which was prescribed at a higher exer-
cise dose than aerobic or resistance training alone [23, 24, 
28], and (5) higher exercise amount. Interestingly, larger 
mean changes likely explained larger proportions because 
proportions increased within a given group (exercise or 
control) and within some moderators (duration, baseline 
BMI, and exercise mode) despite larger estimates of stand-
ard deviation of change scores (Table 2).

3.2  Body Composition Parameters

The best model fit for both waist circumference (Fig. 2) and 
body mass (Fig. 3) was obtained using a t-distribution (elpd 
difference: t-distribution vs. normal skew = 2.3–2.6 times 
standard error; t-distribution vs. normal = 3.9–5.0 times 
standard error). The base IPD model estimated a mean waist 
circumference change of − 2.5 cm (90% CrI − 3.2 to − 1.9] 
for exercise and − 0.04 cm (90% CrI − 0.8 to 0.6) for con-
trol, and a mean body mass change of − 1.4 kg (90% CrI 
− 2.2 to − 0.8) for exercise and − 0.02 kg (90% CrI − 0.8 
to 0.6) for control. The base IPD model also estimated a 
standard deviation of waist circumference change scores of 
4.9 cm (90% CrI 4.2–5.6) for exercise and 5.7 (90% CrI 
4.6–7.9) for control, and a standard deviation of body mass 
change scores of 4.1 kg (90% CrI 3.5–5.0) for exercise and 
4.6 (90% CrI 3.7–6.4) for control. The average Bayes factor 
was less than 1.0 for both outcomes and identified “anecdo-
tal” evidence supporting the  M2 model (waist circumference: 
average Bayes factor = 0.47, range: 0.41–0.56; body mass: 
average Bayes factor = 0.39, range: 0.22–0.68). Similar to 
changes in CRF, substantive overlap of standard deviation of 
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change scores across all subgroups (OSM Tables S2 and S3) 
provides additional support refuting the presence of inter-
individual differences in trainability. Tables 3 and 4 present 
the estimated proportions of participants exceeding MCIDs 
of − 2 cm and − 2 kg as well as estimated means and stand-
ard deviations of change with 90% CrIs denoting subjec-
tive probabilities for waist circumference and body mass, 
respectively. Both outcomes had higher estimated proportion 
of participants exceeding MCIDs in exercise [waist circum-
ference: 54% (90% CrI 48–61); body mass: 42% (90% CrI 
34–50)] compared with control groups [waist circumference: 
30% (90% CrI 23–38); body mass: 26% (90% CrI 18–35)].

Several moderators appeared to increase estimated pro-
portions of participants exceeding the waist circumfer-
ence MCID in the exercise group consistent with standard 
exercise theory (Table 3): (1) higher exercise adherence, 
(2) higher exercise intensity, (3) combined aerobic and 
resistance compared with aerobic or resistance training 
alone, and (4) higher exercise amount. However, longer 
exercise durations beyond 4 months did not appear to 
increase proportions exceeding the MCID for waist cir-
cumference. Several moderators also appeared to increase 
estimated proportions of participants exceeding the body 
mass MCID in the exercise group consistent with standard 
exercise theory (Table 4): (1) higher exercise adherence, 
(2) higher exercise intensity, (3) combined aerobic and 
resistance training compared with aerobic or resistance 
training alone, and (4) higher exercise amounts (low vs. 
high). Interestingly, longer exercise durations appeared 
to decrease the proportions of participants exceeding the 
body mass MCID. Additionally, our results indicated an 
inconsistent pattern with baseline BMI as both lower 

(− 1 SD) and higher (+ 1 SD) levels were associated with 
larger proportions than mean levels (± 1 SD). Similar to 
CRF, many of the most probable estimates of standard 
deviations of change scores were larger as proportions 
increased within a given group (exercise or control) and 
within some moderators for waist circumference (exer-
cise duration, mode, and amount; Table 3) and body mass 
(baseline BMI, adherence, and exercise amount; Table 4).

4  Discussion

This was the first IPD meta-analysis to investigate the 
presence of interindividual differences in trainability and 
estimate proportions of participants expected to experi-
ence meaningful benefit in CRF, waist circumference, 
and body mass. Our results revealed four key findings: 
(1) large between-subject variability in observed change 
scores in both exercise and control groups; (2) consistent 
evidence of a lack of interindividual differences in train-
ability; (3) a higher proportion of participants exceeding 
MCIDs following exercise training compared with control 
for all three outcomes; and (4) several moderators consist-
ent with standard exercise theory including higher exer-
cise adherence, intensity, amount, and combined aerobic 
and resistance training were associated with higher pro-
portions of participants exceeding MCIDs for all three 
outcomes. Collectively, our results indicate that over peri-
ods of 4–8 months individuals can experience relatively 
large changes in observed CRF, waist circumference, and 
body mass. The variation in these changes is consistent 
between exercise and control groups, negating the notion 

Fig. 1  Distribution of change 
score in cardiorespiratory fit-
ness (CRF) to exercise (green) 
and control (blue). Black verti-
cal lines represent estimated 
mean changes and the dashed 
red line represents the minimum 
clinically important difference 
of + 3.5 mL/kg/min. Standard 
deviations are not reported in 
figures but are illustrated as the 
width of the distribution curves. 
CrI credible interval
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that interindividual differences in trainability explains why 
individuals appear to differentially benefit following exercise 
training. However, compared with control, exercise results 
in larger mean changes causing systematic shifts in change 
score distributions centered around the mean change. This 
shift has a substantive effect on the proportion of individu-
als expected to experience clinically meaningful benefits 
in CRF, waist circumference, and body mass. Accordingly, 

exercise prescriptions that elicit larger mean changes—such 
as increasing exercise amount [18, 30, 32]—can also shift 
the overall change distribution and thus further increase the 
likelihood of clinically meaningful benefits.

Our findings add to the growing body of work question-
ing the assumption that variability in observed responses 
to exercise training reflects interindividual differences in 
trainability [12, 14, 15, 44, 45]. Among the meta-analyses 

Table 2  Analysis of relative cardiorespiratory fitness (CRF) change scores and moderator analyses involving exercise vs. control and exercise 
only comparisons

N number of individuals included in the IPD model
Proportion > MCID: The proportion estimated to meet or exceed the minimal clinically important clinical difference, with 90% credible inter-
vals denoting Bayesian subjective probabilities
a Combines participants from intervention durations of 8 and 9 months
b Intensities were prescribed as percentages of different variables across studies (see Table 1 for details)
c Low, mid, and high exercise amounts categorized as less than 500 kcal, between 500 and 1000, and greater than 1000 kcal prescribed per ses-
sion

Model or moderator Exercise (90% credible intervals) Control (90% credible intervals)

N Proportion ≥ MCID Standard deviation 
(mL/kg/min)

N Proportion ≥ MCID Standard devia-
tion (mL/kg/
min)

Exercise vs. control
 Base model 1378 0.30 (0.21–0.41) 3.4 (2.9–3.9) 329 0.11 (0.05–0.19) 3.5 (2.9–4.2)

Exercise vs. control moderators
 Duration
  4 months 158 0.20 (0.09–0.32) 3.0 (2.2–3.6) 23 0.07 (0.01–0.15) 3.0 (2.2–3.8)
  6 months 804 0.27 (0.17–0.39) 3.4 (2.7–4.1) 237 0.11 (0.04–0.20) 3.5 (2.7–4.4)
  8 months 4161 0.35 (0.25–0.46) 4.1 (3.3–5.2) 69a 0.16 (0.08–0.26) 4.3 (3.3–5.9)

 Baseline BMI
  − 1 SD 1376 0.29 (0.20–0.40) 3.4 (2.8–3.9) 329 0.11 (0.06–0.19) 3.5 (2.9–4.3)
  Mean 0.31 (0.22–0.42) 3.5 (2.9–4.1) 0.13 (0.07–0.21) 3.8 (3.0–4.7)
  + 1 SD 0.27 (0.18–0.39) 3.2 (2.7–3.8) 0.11 (0.05–0.18) 3.4 (2.7–4.1)

Exercise-only moderators
 Exercise adherence
  Low (< 70%) 73 0.21 (0.10–0.34) 3.6 (3.0–4.2)
  High (≥ 70%) 1252 0.30 (0.19–0.44) 3.6 (2.9–4.1)

 Exercise  intensityb

  Low (< 60%) 498 0.21 (0.09–0.34) 3.6 (2.5–4.4)
  High (≥ 60%) 690 0.37 (0.22–0.52) 4.4 (3.3–6.5)

 Exercise mode
  Low (< 60%) 498 0.21 (0.09–0.34) 3.6 (2.5–4.4)
  High (≥ 60%) 690 0.37 (0.22–0.52) 4.4 (3.3–6.5)

 Exercise mode
  Aerobic 1188 0.28 (0.17–0.41) 3.5 (2.9–4.0)
  Resistance 97 0.24 (0.15–0.36) 3.4 (2.8–3.9)
  Combined 93 0.40 (0.31–0.50) 4.9 (3.8–6.8)

 Exercise  amountc

 Low 145 0.22 (0.13–0.33) 3.9 (3.1–5.2)
 Mid 291 0.27 (0.16–0.39) 4.4 (3.5–5.5)
 High 749 0.36 (0.23–0.48) 3.7 (2.9–4.5)
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Fig. 2  Distribution of change score in waist circumference to exer-
cise (green) and control (blue). Black vertical lines represent esti-
mated mean changes and the dashed red line represents the minimum 

clinically important difference of − 2 cm. Standard deviations are not 
reported in figures but are illustrated as the width of the distribution 
curves. CrI credible interval

Fig. 3  Distribution of change 
score in body mass to exercise 
(green) and control (blue). 
Black vertical lines represent 
estimated mean changes and the 
dashed red line represents the 
minimum clinically important 
difference of − 2 kg. Standard 
deviations are not reported in 
figures but are illustrated as the 
width of the distribution curves. 
CrI credible interval
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questioning this assumption [13–15], we believe the present 
IPD meta-analysis provides the most powerful evidence for 
several reasons: (1) we included a very large sample size 
(n = 1879) gathered from eight methodologically robust 
RCTs [21–28], (2) we obtained consistent findings across 
multiple outcomes; (3) we included flexible and detailed 
analysis frameworks that assessed the distribution of change 
scores (e.g., a t-distribution with wider tails than Gaussian 
such that more than 5% of participants lay beyond 2 standard 
deviations), and (4) we demonstrated consistent variances 
between exercise and control even when including mod-
erators such as duration and baseline BMI. In addition, the 
present IPD meta-analysis extends previous meta-analyses 

[13–15] by contextualizing the practical significance of 
shifted but similar spread change score distributions between 
exercise and control, and across different levels of common 
exercise moderators (Tables 2, 3, 4). It is important to high-
light that the present and previous meta-analyses [13–15] 
evaluated the presence of interindividual differences in 
trainability by comparing variance between exercise and 
control groups assuming that error and within-subject vari-
ability are equal between groups [6]. However, this assump-
tion may be inappropriate as the inability to blind group 
assignment in exercise RCTs may lead to some participants 
initiating behavioural changes based on their preference 
toward their assigned group [46], which in turn can lead 

Table 3   Analysis of relative waist circumference change scores and moderator analyses involving exercise vs. control and exercise only com-
parisons

N number of individuals included in the IPD model
Proportion > MCID: The proportion estimated to meet or exceed the minimal clinically important clinical difference, with 90% credible intervals 
denoting Bayesian subjective probabilities
a Combines participants from intervention durations of 8 and 9 months
b Intensities were prescribed as percentages of different variables across studies (see Table 1 for details)
c Low, mid, and high exercise amounts categorized as less than 500 kcal, between 500 and 1000, and greater than 1000 kcal prescribed per ses-
sions

Model or moderator Exercise (90% credible intervals) Control (90% credible intervals)

N Proportion ≥ MCID Standard deviation (cm) N Proportion ≥ MCID Standard deviation (cm)

Exercise vs. control
 Base model 1475 0.54 (0.48–0.61) 4.9 (4.2–5.6) 359 0.30 (0.23–0.38) 5.7 (4.6–7.9)

Exercise vs. control moderators
 Duration
  4 months 159 0.52 (0.41–0.61) 4.5 (3.6–5.6) 31 0.26 (0.17–0.35) 5.6 (4.0–8.9)
  6 months 807 0.53 (0.46–0.61) 4.8 (4.1–5.6) 248 0.29 (0.20–0.37) 5.7 (4.4–8.1)
  8 months 5091 0.54 (0.48–0.61) 5.3 (4.4–6.4) 80a 0.31 (0.23–0.40) 5.8 (4.6–8.1)

 Baseline BMI
  − 1 SD 1475 0.54 (0.48–0.61) 4.8 (4.1–5.6) 359 0.29 (0.22–0.37) 5.3 (4.4–7.2)
  Mean 0.53 (0.46–0.61) 4.4 (3.8–5.2) 0.26 (0.19–0.35) 4.9 (4.0–6.9)
  + 1 SD 0.56 (0.50–0.62) 5.2 (4.5–6.1) 0.32 (0.24–0.40) 5.9 (4.8–8.2)

Exercise-only moderators
 Exercise adherence
  Low (< 70%) 98 0.39 (0.30–0.47) 5.1 (4.1–6.1)
  High (≥ 70%) 1325 0.56 (0.48–0.63) 4.9 (4.2–5.7)

 Exercise  intensityb

  Low (< 60%) 515 0.44 (0.35–0.55) 4.9 (4.0–5.8)
  High (≥ 60%) 681 0.54 (0.46–0.62) 4.8 (4.0–5.7)

 Exercise mode
  Aerobic 1196 0.53 (0.45–0.62) 5.1 (4.3–5.9)
  Resistance 140 0.46 (0.37–0.56) 4.8 (4.0–5.9)
  Combined 139 0.61 (0.54–0.68) 5.2 (4.4–6.2)

 Exercise  amountc

  Low 142 0.43 (0.30–0.61) 4.5 (3.5–6.5)
  Mid 293 0.45 (0.35–0.53) 4.7 (3.8–5.7)
  High 759 0.56 (0.47–0.62) 5.1 (4.2–6.1)
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to unequal within-subject variability between groups [6]. 
There are additional factors associated with RCTs that may 
lead to differences in variance between groups such as (non)-
compliance or baseline factors influencing susceptibility to 
adaptation [47]. A within-subjects design in which partici-
pants are repeatedly exposed to both control and exercise 
interventions avoids this assumption by directly quantify-
ing error and within-subject variability [48, 49]. However, 
these study designs are costly, labour intensive, and may 
introduce additional confounding variables (e.g., carryo-
ver effects) [50]. Therefore, at present, analyses comparing 
variance between exercise and control groups have yet to 
conclusively demonstrate the presence of interindividual 
differences in trainability.

Although we did not observe evidence of variability 
caused by exercise training per se, we did obtain large most 
probable estimates of standard deviation of change scores 
(Tables 2, 3, 4). For instance, the standard deviation of 
change scores for both exercise and control groups exceeded 
the typical errors of measurement reported in the literature 
(~ 1–2 mL/kg/min for CRF [18, 51]; ~ 0.5 cm for waist cir-
cumference [52, 53], and ~ 0.5 kg for body mass [52]). Our 
findings therefore indicate that individuals experienced real 
physiological differences in changes in CRF, waist circum-
ference, and body mass, and that behavioural factors (e.g., 
sleep, stress, external physical activity, etc. [4]) may under-
lie this variance rather than exercise per se. Future work is 
needed to investigate the contribution of various behavioural 

Table 4  Analysis of relative body mass change scores and moderator analyses involving exercise vs. control and exercise only comparisons

N number of individuals included in the IPD model
Proportion > MCID: The proportion estimated to meet or exceed the minimal clinically important clinical difference, with 90% credible intervals 
denoting Bayesian subjective probabilities
a Combines participants from intervention durations of 8 and 9 months
b Intensities were prescribed as percentages of different variables across studies (see Table 1 for details)
c Low, mid, and high exercise amounts categorized as less than 500 kcal, between 500 and 1000, and greater than 1000 kcal prescribed per ses-
sions

Model or moderator Exercise (90% credible intervals) Control (90% credible intervals)

N Proportion ≥ MCID Standard deviation (kg) N Proportion ≥ MCID Standard deviation (kg)

Exercise vs. control
 Base model 1535 0.42 (0.34–0.50) 4.1 (3.5–5.0) 375 0.26 (0.18–0.35) 4.6 (3.7–6.4)

Exercise vs. control moderators
 Duration
  4 months 159 0.47 (0.36–0.57) 3.9 (3.0–5.1) 31 0.28 (0.18–0.39) 4.4 (3.2–7.3)
  6 months 823 0.43 (0.35–0.51) 4.1 (3.3–5.0) 247 0.26 (0.18–0.35) 4.5 (3.5–6.4)
  8 months 5531 0.39 (0.33–0.47) 4.4 (3.5–5.5) 97a 0.25 (0.17–0.33) 4.7 (3.6–6.8)

 Baseline BMI
  − 1 SD 1535 0.42 (0.35–0.51) 3.9 (3.3–4.5) 375 0.25 (0.18–0.35) 4.3 (3.5–5.7)
  Mean 0.35 (0.27–0.46) 3.4 (2.9–4.0) 0.19 (0.11–0.29) 3.8 (3.0–5.2)
  + 1 SD 0.48 (0.41–0.56) 4.5 (3.8–5.3) 0.31 (0.24–0.40) 4.9 (4.0–6.7)

Exercise-only moderators
 Exercise adherence
  Low (< 70%) 108 0.31 (0.22–0.41) 4.0 (3.2–4.9)
  High (≥ 70%) 1376 0.42 (0.33–0.52) 4.6 (3.6–6.2)

 Exercise  intensityb

  Low (< 60%) 550 0.37 (0.26–0.48) 4.0 (3.3–4.9)
  High (≥ 60%) 699 0.43 (0.34–0.54) 4.0 (3.3–4.8)

 Exercise mode
  Aerobic 1249 0.42 (0.34–0.51) 4.2 (3.4–5.1)
  Resistance 141 0.30 (0.22–0.41) 4.9 (3.8–5.1)
  Combined 145 0.52 (0.46–0.59) 4.4 (3.5–5.2)

 Exercise  amountc

  Low 145 0.25 (0.14–0.37) 3.0 (2.6–3.5)
  Mid 301 0.36 (0.27–0.47) 3.4 (2.9–4.0)
  High 803 0.44 (0.33–0.53) 4.1 (3.5–6.0)
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factors on observed changes following standardized and con-
trolled exercise interventions.

Regardless of whether a group of individuals respond 
differently to exercise training, practitioners in clinical and 
applied settings remain faced with the challenge of pre-
scribing exercise at the individual level. Our analyses first 
found that a higher proportion of exercise participants were 
expected to exceed MCIDs for CRF, waist circumference, 
and body mass compared with controls, which is consistent 
with the well-established effect of exercise training on impor-
tant health outcomes [54]. Additionally, several moderators 
consistent with standard exercise theory—higher exercise 
amounts, intensities, adherence, and combined aerobic and 
resistance training—resulted in higher proportions for all 
three outcomes. Because standard deviation of change scores 
did not shrink with increasing proportions (Tables 2, 3, 4), 
larger mean changes likely explained why certain modera-
tors (e.g., higher exercise amounts) increased proportions 
of participants exceeding MCIDs. Thus, although we only 
explored six potential moderators, these findings suggest 
that mean changes would also explain why other moderators 
impact response proportions; however, future work is needed 
to confirm this speculation. We recently demonstrated that 
larger mean changes, not reduced interindividual variability, 
explain why higher doses of exercise training increase CRF 
response rates [17]. The present Bayesian analysis supports 
our recent finding [17], and suggests that practitioners should 
prescribe exercise doses known to elicit large mean changes 
in order to increase the probability that an individual experi-
ences a meaningful change in CRF, waist circumference, and 
body mass. Whilst substantive imbalances in exercise and 
control sample sizes were obtained across all analyses, these 
imbalances are unlikely to have influenced the findings. Lower 
sample sizes in control groups resulted in wider credible inter-
vals for estimates of change score standard deviations; how-
ever, overlap in central estimates was considerable across all 
analyses leading to very consistent findings regardless of the 
outcome variable or moderator investigated.

4.1  Limitations

There are several limitations with the present analysis. First, 
our Bayes factor analysis supports the notion that variability 
in observed changes is confounded by the totality of the 
effects of measurement error and variation in behavioural/
environmental factors. Our study design, and the designs of 
the included trials, did not allow us to determine the extent 
to which certain individual behavioural/environmental fac-
tors contributed to within-subject variability. The evidence 
that subtle changes in sleep quality, stress levels, or other 
behavioural/environmental factors impact training adapta-
tions is indirect at best [4], warranting the need for future 
work designed to test the effects of individual behavioural/

environmental on observed variability. Second, we unfortu-
nately do not have measures of measurement error, such as 
coefficients of variation, for CRF, waist circumference, or 
body mass for each trial and it is possible that measurement 
errors varied across trial sites. Given that many previous 
studies have similarly reported a lack of interindividual dif-
ferences in response to exercise training [10–13, 55], we do 
not believe potential differences in measurement error across 
trial sites would have a major impact on our Bayes factor 
results. Nevertheless, when possible, future studies should 
consider incorporating site-specific measurement error into 
statistical models for pooled analyses. Third, although our 
subgroup analyses revealed a consistent lack of interindivid-
ual differences in trainability across various participant char-
acteristics, all included trials recruited overweight, obese, 
or diabetic participants suggesting that our findings are not 
generalizable to other populations such as lean and healthy 
adults. In our recent systematic review [56] we did not iden-
tify any study statistically investigating the presence of inter-
individual differences in trainability in lean, healthy adults, 
thus highlighting another area for future work. Fourth, it 
is important to acknowledge that comparing our results in 
Tables 2, 3, 4 is likely outcome-dependent as proportions 
are determined by mean changes [17] and outcome-specific 
MCIDs [57]. These results should therefore be interpreted 
independently for each outcome and should not be used to 
compare proportions across CRF, waist circumference, and 
body mass. Additionally, it is important to recognize that 
the use of MCIDs in the present article represents an effect 
size justified by associations with clinical outcomes [9, 11, 
35]. Previous discussions have highlighted the limitations of 
MCIDs, such as the inability to delineate regression to the 
mean from true responses to an intervention [58, 59]. The 
use of MCID in the present analysis was meant to provide 
an easy-to-understand comparison of proportions between 
exercise and control groups, and it is important to consider 
our results in the context of limitations with MCIDs. Finally, 
we recognize the Bayesian analyses employed in this review 
were computationally complex and required advanced statis-
tical training. Although few researchers in applied exercise 
science can likely perform such analyses on their own, the 
advantages of these analyses (described above) highlight 
the importance of collaborating with biostatisticians when 
investigating individual responses to exercise.

5  Conclusion

Despite the widespread assumption that individuals respond 
differently to exercise, the current IPD meta-analysis provided 
evidence in favour of no interindividual differences in train-
ability for CRF, waist circumference, and body mass. Although 
exercise training per se may not explain why individuals 
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differentially benefit from completing ostensibly the same dose 
of exercise training, completing exercise training will increase 
the probability that an individual will experience a meaningful 
change in CRF, waist circumference, and body mass. Moreover, 
individuals can experience very large changes in these three 
outcomes following 4–9 months of exercise training with large 
interindividual variability in observed change scores. It is there-
fore expected that behavioural factors (e.g., sleep, nutrition, 
stress, etc.) can influence whether an individual experiences 
clinically meaningful improvements, and researchers should 
seek to better understand which external factors are most influ-
ential for observed changes in CRF, waist circumference, or 
body mass. At present, our results suggest that practitioners 
should prescribe exercise training doses known to elicit large 
mean changes in order to increase the probability that an indi-
vidual will experience meaningful benefits.
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